Sorry, the detailed information about the dynamic rupture simulation test is below.
Firstly, I construct a simple geometry model. It is a planar embedded into the domain.
Secondly, I set the spatial database file. The material of the domain is set to be elastic. The surface of the domain is set to be free surface; other five boundaries are set to be absorbing boundaries.
I set the static coefficient, dynamic coefficient and effective normal stress as 0.6778, 0.525 and -120 MPa. I set the initial traction-shear-leftlateral as a Gaussian distribution, whose center is slightly larger than the static friction. The initial traction-shear-updip is set to 10 MPa, which is much smaller than the dynamic friction and static friction.
So the friction spatial database file is as following (here just list three columns):
#SPATIAL.ascii 1
SimpleDB {
num-values = 4
value-names = static-coefficient dynamic-coefficient slip-weakening-parameter cohesion
value-units = none none m Pa
num-locs = 3366
data-dim = 2
space-dim = 3
cs-data = cartesian {
to-meters = 1.0 // Specify coordinates in m for convenience.
space-dim = 3
} //cs-data
} // SimpleDB
// Columns are
// (1) x coordinate (m)
// (2) y coordinate (m)
// (3) z coordinate (m)
// (4) static-coefficient
// (5) dynamic-coefficient
// (6) slip-weakening-parameter (m)
// (7) cohesion (Pa)
-6000.000000 -11000.000000 0.000000 0.677800 0.525000 0.400000 0.000000
-5860.000000 -11000.000000 0.000000 0.677800 0.525000 0.400000 0.000000
-5720.000000 -11000.000000 0.000000 0.677800 0.525000 0.400000 0.000000
And the traction spatial database file is as following (here just list three columns):
#SPATIAL.ascii 1
SimpleDB {
num-values = 3
value-names = traction-shear-leftlateral traction-shear-updip traction-normal
value-units = MPa MPa MPa
num-locs = 3366
data-dim = 2
space-dim = 3
cs-data = cartesian {
to-meters = 1.0 // Specify coordinates in m for convenience.
space-dim = 3
} //cs-data
} // SimpleDB
// Columns are
// (1) x coordinate (m)
// (2) y coordinate (m)
// (3) z coordinate (m)
// (4) left-lateral shear traction (MPa)
// (5) reverse shear traction (MPa)
// (6) normal traction (MPa)
-3340.000000 -1523.076923 0.000000 71.327160 10.000000 -120.000000
-3200.000000 -1523.076923 0.000000 73.170816 10.000000 -120.000000
-3060.000000 -1523.076923 0.000000 74.935563 10.000000 -120.000000
Then I set the cfg files and run the simulation. Finally, I plot the slip.
The strike direction:
The dip direction:
Although the slip in dip direction is much smaller than that in strike direction, it slips in the dip direction.